
RTOS Innovators

Sales: (800) 366-2491 Email: sales@smxrtos.com Web: www.smxrtos.com Voice: (714) 437-7333 Fax: (714) 432-0490

smx® Special Features

smx is an advanced RTOS kernel. The Advanced
Features section of the smx datasheet summarizes
the advanced features of smx. This document
presents more detailed information for the most
important of these features and discusses their
usage. See the smx User’s Guide for more
technical detail and for examples.

High Performance

smx performance features permit using slower, less-
costly processors. They also can avoid the need for a
separate processor to handle foreground operations.

Three-Level Structure

ISRs

SMX + BSP

Hardware

LSRs

Tasks
Application

smx supports a three-level structure for application
code, as shown above. These levels are:

• Interrupt Service Routines (ISRs)
• Link Service Routines (LSRs)
• Tasks

LSRs fill the gap between ISRs and tasks. LSRs are
usually invoked from ISRs, and they run after all
ISRs have run. LSRs are interruptible to allow more
ISRs to run. They are ideal for applications with
heavy interrupt loads due to the following:

• Deferred interrupt processing.
• Reduced interrupt latency.
• Graceful overload handling.
• Reduced reentrancy problems.

Contents

HIGH PERFORMANCE.. 1

Three-Level Structure ..1
Scheduler Features ...2
Layered Ready Queue..3
Fast Heap ...4
Timers Directly Launch LSRs5
No-Copy Block I/O..5

SMALL MEMORY FOOTPRINT 5
Stack RAM Reduction ...5
Minimizing Stack RAM...5
Efficient Memory Allocation ...7
Sharing Dynamic Control Blocks7

DEBUG AIDS .. 7
Debugger Support ..7
esmx (examples for smx) ...8
Event Logging..8
Stack Overflow Detection..9
Task Stack Sizing...9
Heap Debugging ..9
Precise Profiling...9
Precise Time Measurements ..10

SAFETY, SECURITY, AND RELIABILITY..... 10
Error Detection and Management10
Task Timeouts..11
Graceful Overload Handling by LSRs11
The Unstoppable LSR..12
Safe Messaging ..12
Message Exchanges ...13
Message Priorities..13
Safe Block Pools..13
Reliable Heap...13
Dynamically Allocated Regions14
Avoiding Unbounded Priority Inversion......................14
Deadlock Prevention..14

OTHER SPECIAL FEATURES 15
Power Management ...15
Easy to Use API...15
C++ Support...15

Deferred interrupt processing. It is general practice
to keep ISRs as short as possible in order to minimize
interrupt latency caused by the ISRs, themselves, and
to avoid ISR reentrancy problems. With smx,

 2

interrupt service code that is less time-critical can be
deferred to LSRs.
LSRs are invoked by ISRs when there is work for
them to do, and they run after all pending ISRs have
finished. Multiple LSRs can be enqueued in the LSR
queue. The same LSR can even be enqueued more
than once. LSRs perform deferred interrupt
processing, including calling smx services. For more
discussion, see the Deferred Interrupt Processing
white paper.
Interrupt latency determines how frequently
interrupts can occur without being missed. It is
defined as the time from when an interrupt occurs
until its ISR starts running and is the sum of three
delays:

interrupt latency = processor latency + kernel
 latency + application latency

Kernel latency consists of the time that the kernel
disables interrupts. Because ISRs do not make smx
service calls, all smx services, LSRs, and 95% of the
smx scheduler run with interrupts enabled.
Consequently, smx interrupt latency is very small —
about the same as the processor, itself.
Graceful overload handling is a feature of LSRs
that is discussed in a section, below.
Reentrancy problems are reduced by deferring
processing from ISRs to LSRs because LSRs cannot
preempt each other.
Relaxed task latency. Critical functions that require
very low-latency can be moved from tasks to LSRs.
Then the required task latency can be relaxed. This
permits more task design freedom.

Scheduler Features
The scheduler is the most important part of a
multitasking kernel. It decides whether or not to run a
new task. To do so, it suspends or stops the current
task and resumes or starts the new task.
smx Scheduler: smx has an advanced scheduler
written in optimized C, using assembly functions for
operations that C cannot perform. It runs exclusively
using the System Stack with interrupts enabled about
95% of the time. SSR_EXIT() and ISR_EXIT()
decide whether to call the prescheduler, which in turn
decides whether to call the LSR and task schedulers.
Bypass paths through the EXITs and prescheduler
improve performance when the current task is being

continued or exit is to another part of smx (e.g. an
SSR or the scheduler interrupted by an ISR).
The LSR scheduler runs all LSRs in the LSR queue,
and then returns to the prescheduler. LSRs can call
SSRs and invoke other LSRs — all with interrupts
enabled.
The task scheduler runs only when an operation has
occurred that requires a task switch. It tests for stack
overflow, stops or suspends the current task, and then
starts or resumes the top task in the ready queue. In
the dispatch process, it handles the difficulties related
to stack sharing and scanning. (The benefits of these
are discussed in sections below.) It also handles
exceptional conditions such as a damaged or empty
ready queue.
Prior to actually dispatching the next task, the
scheduler checks the LSR queue to see if an LSR has
become ready to run due to an interrupt that occurred
while the scheduler was running. If so, the scheduler
does an LSR flyback, which will run the LSR(s) and
then start the task scheduling process all over, if a
higher priority task has become ready to run due to an
LSR running.
The scheduler also implements task profiling if
enabled, task switching time measurements if
enabled, and autostop due to a task running through
the closing brace of its main function or returning
from its main function.
The scheduler assembly functions and the
prescheduler comprise about 100 lines of assembly
code, making the scheduler portable to other
processor architectures, with minimal effort.
Fast Task Switching encourages dividing an
application into many tasks, thus allowing the kernel
to do more of the work of coordinating operations via
its intertask communication mechanisms. This
simplifies application development by allowing it to
be implemented with small, simple tasks that are
easier to write and debug.
There are two fundamental types of commercial
RTOS kernels: task-mode kernels and process-mode
kernels.
smx is a task-mode kernel. All software runs in the
same memory space and in the supervisor or
protected mode of the processor. Task switching
requires saving the current task’s non-volatile
registers in its Register Save Area (RSA), moving to
the new task’s TCB, restoring the new task's saved

www.smxrtos.com/articles/techppr/DeferredInterruptProcessing.pdf

 3

registers from its RSA, then resuming the new task
from where it left off. All of this is implemented very
efficiently.
Process-mode kernels separate the kernel and the
application into isolated processes. Isolation requires
a processor with a Memory Management Unit
(MMU). In addition to the above normal task
switching operations, switching from a task in one
process to a task in another process requires purging
the MMU look-aside buffer, switching to a different
page table, reloading caches, and possibly other
operations. These extra steps place a large time
overhead on task switching. Messaging also
encounters increased overhead due to the need to
copy messages from one process’s memory space to
another’s. Process mode is normally used in
environments that run independent applications, some
of which may not be reliable or trustworthy.
A task-mode kernel, such as smx, is the better choice
for hard-real-time embedded systems.
Preemptive Scheduling, as used by smx, is the best
method for embedded system task switching. As soon
as a higher priority task is ready to run, it preempts
the current task and runs. There is no time-slice
granularity involved, as with some kernels.
The problem with time-slice scheduling is that a
ready task must wait until the end of the current time
slice to be dispatched. Thus, task response time is
governed by the granularity of the time slice. If the
granularity is too coarse, task response time is too
slow. If the granularity is too fine, there is too much
overhead from interrupting the current task to
determine if a higher priority task is ready to run.
Multiple Tasks per Priority Level: smx allows
multiple tasks to share a priority level. Within a group
of equally important tasks, the task that has waited
longest will run first. This is a more natural
scheduling method as compared to requiring each
task to have a different priority.
Allowing multiple tasks at the same priority level also
simplifies round-robin scheduling, and priority
promotion (see mutex discussion) works better if
tasks can share priority levels.
Scheduler Locking: smx allows the current task to
lock the scheduler, in order to protect itself from
preemption. Locking is useful for short sections of
critical code and for accessing global variables
because its overhead is small. ISRs and LSRs are not

blocked from running so there is no foreground
impact.
Locking is also useful to prevent unnecessary task
switches. For example:

smx_TaskLock(); /* lock current task */
smx_SemSignal(semA);
smx_SemTest(semB, tmo); /* unlock it */

Without the lock, a higher priority task waiting at
semA will immediately preempt this task, when it
signals semA. When the higher-priority task is done,
this task will resume only to suspend itself on semB
— a wasted task switch. With the lock, the higher
priority task becomes ready, but does not run. This
task then suspends itself on semB, which
automatically unlocks this task, and the higher
priority task runs.
The smx locking mechanism supports nesting. This is
important because a function, which does locking,
may call a sub-function, which also does locking. If
the sub-function left the current task unlocked, due to
lack of lock nesting, then the function would be
unprotected, thereafter.

Layered Ready Queue
The layered ready queue1 supports a large number of
tasks, with minimal overhead. Enqueueing a new task
in a linear ready queue, as used by most kernels,
requires searching from the beginning of the ready
queue until the last enqueued task of equal priority is
found, after which the new task is enqueued.
Obviously, if there are a large number of tasks in the
ready queue, this will take significant time.
In most kernels, interrupts are disabled for the entire
enqueueing time, because ISRs can make kernel calls,
which result in enqueueing new tasks in the ready
queue. This can greatly increase interrupt latency,
which is one of the most important things in an
embedded system. Making matters even worse is that
the lowest priority tasks take the longest to enqueue.
Hence, the least important tasks are slowing down
interrupt response the most.
When designing smx, we observed that since smx
tasks are permitted to share priority levels, embedded
systems usually need no more than about 10 priority
levels. Therefore, smx has a separate ready queue
level for each priority level. Each level is headed by a

1 The ready queue is where ready-to-run tasks are
enqueued.

 4

ready queue control block (RQCB). The RQCBs are
contiguous in memory and in order by priority.
Enqueueing a task is thus a two-step process:

(1) index to the correct RQCB, using the priority
of the task, and

(2) follow the backward link of the RQCB to the
end of the queue and link the TCB to it:

2 2

2

QCB TCB

0

2

1

0

Doubly linked list makes
enqueueing fast.
(Uses backlink from QCB.)

Numbers are priorities.

Index
Enqueue

This two-step process is fast and it takes the same
amount of time regardless of how many tasks are in
the ready queue — 10 or 10,000 makes no difference.
Finding the next task to dispatch is also fast because
smx maintains a pointer to the TCB of the next task
to run (which is the first task in the highest occupied
rq level).

Fast Heap
The new smx heap is a high-performance,
configurable heap, with debug and safety features. It
has some similarities to GPOS heaps, in that it is a
bin-type heap. But, it is simpler, and it has an
implementation appropriate for embedded systems.
Its architecture is governed by the following
embedded system objectives:

(1) Works with very small to large amounts of
RAM.

(2) High performance.
(3) Deterministic behavior.
(4) Small code size.
(5) Ruggedness.
(6) Strong debug support.

Embedded system heaps can vary in size from
kilobytes to megabytes. Hence, efficiency,
performance, and adaptability are important. At the

low end, efficient memory utilization is most
important; at the high end, performance is most
important. In general, all embedded systems need
fast, deterministic block allocations. Code must be as
small and efficient as possible, especially for low-end
systems. Requirements 5 & 6 are discussed in
appropriate sections that follow.
Most RTOSs have linear heaps, which require
searching from the first free chunk until a big-enough
free chunk is found, in order to allocate a block of the
desired size. When a heap becomes highly
fragmented this can require searching through
hundreds of chunks.
The new smx heap has a two dimensional structure:

(1) Physical structure
(2) Logical structure

The physical structure is the usual linear structure
with all chunks (inuse and free) linked together, in
physical order. The logical structure consists of heap
bins. A heap bin holds one chunk size (small bin) or a
range of chunk sizes (large bin). The bins are
configured by a size array and can be reconfigured
merely by adding, removing, or changing sizes.
A bin heap normally starts with a small bin array
(SBA). This might consist, for example, of bins for
chunk sizes 24, 32, 40, ... bytes up to any desired
limit. The SBA is accessed simply by converting
chunk size to the bin index. As long as bins are kept
full, allocation is nearly as fast as a block pool. This
is very attractive for object-oriented languages such
as C++, which are heavy heap users.
Above the SBA is the upper array of large and small
bins culminating in the top bin. It takes all sizes
above its limit (e.g. 2048 bytes and up). There can be
any number of bins in the upper bin array. Access to
the correct upper bin is via a binary search algorithm
— still very fast. Within a large bin the best-fit chunk
is taken after N tries, where N is a configuration
option.
Several services and mechanisms are provided to
keep bins full — see the smx Heap section in the
smx datasheet. To the degree that this is achieved, the
heap is very fast and deterministic.

www.smxrtos.com/rtos/kernel/smx.pdf

 5

Timers Directly Launch LSRs
smx one-shot, cyclic, and pulse timers directly invoke
LSRs, instead of starting or resuming tasks. Hence,
timer code runs at a higher priority than any task and
it cannot be blocked by any task (i.e. priority
inversion is not possible between a task and an LSR).
Even task locking does not prevent LSRs from
running. The net result is reduced timer jitter and
greater accuracy of timed operations. This is
important for precise sampling and smooth control.

No-Copy Block I/O
Through a process we call block migration, smx
allows any block to be made into a message, which
then can be propagated to tasks via exchanges. This
brings the full exchange messaging capabilities of
smx to bear on I/O blocks.
smxBase provides interrupt-safe block pools for use
from ISRs, so that an ISR can obtain an input block
from a base pool and fill it with incoming data. When
full, the ISR invokes an LSR and passes the block
pointer to it. The LSR makes the block into an smx
message and sends the message to a message
exchange, where a task waits to process it.
The message may be partially processed by the first
task, then sent up to the next layer of the software
stack via another exchange, and so forth. When the
last task is done with the message, it simply releases
it, and the data block automatically goes back to the
correct base pool. This entire process requires no
copying of the message, hence it is efficient and fast.
The reverse process can be used for block output: A
message is obtained by a high-level task, partially
filled, and then passed down to the next software
level via an exchange. The task waiting at that
exchange adds more information (e.g. a header) and
passes the message down to the next level, etc.
The lowest level of the software stack (which could
be a task or an LSR) unmakes the message into a bare
block, loads its block pointer and pool handle into
ISR global locations, and starts the output process.
The ISR outputs all of the data, then releases the
block back to the pool it came from. Like input, this
entire process requires no copying of the message.
smx block migration provides considerable flexibility
in that blocks can come from anywhere. If they are
either base or smx pool blocks they will automatically
be released back their correct pools. Whatever thread

(ISR, LSR, or task) is releasing a block need not
know where it came from. If the block is not from a
pool, the pool parameter is NULL, and no action is
taken to release the block to a pool.

Small Memory Footprint
Small memory footprint is important for SoCs,
because using only on-chip memory is cheaper and
faster than using additional off-chip memory. This
also allows using simpler processors, without MMUs,
thus producing further cost and power savings. In
addition, the smaller the memory, the smaller the
chip, and the lower its cost. These savings are
particularly important in low-cost embedded products
that are produced in large quantities (e.g. Things).
SRAM requires about 6 times the chip space of flash
memory. Hence, minimal RAM usage is more
important than minimal flash usage, although both are
important.

Stack RAM Reduction
In general, every active task requires its own stack.
(An active task is one that is running, ready to run, or
waiting for an event.) For best performance, stacks
should be in fast RAM. This is especially true if auto
variables are used extensively in routines called by
tasks in order to achieve reentrancy.
Depending upon the amount of function nesting, the
number of function parameters, and the number of
auto variables, task stacks can be quite large. Hence,
systems with large numbers of tasks can require large
amounts of RAM for their stacks.
In RAM-constrained designs, this tends to result in
the unfortunate tradeoff of using fewer tasks than is
optimum for the application. When this happens,
many benefits of multitasking, such as ease of coding,
are lost because operations that could be handled by
kernel services become internal operations within
tasks. Application code must be created to perform
these operations that could otherwise be handled by
existing smx services. In addition these operations are
hidden from debug tools, such as smxAware.

Minimizing Stack RAM
System Stack (SS) is used for initialization, ISRs,
LSRs, the scheduler, and the error manager. This
leaves only the stack requirement of each task, itself,

 6

which greatly reduces the amount of RAM required
per task and makes it easier to fine-tune task stack
sizes, since the unpredictability of interrupts is
removed. Of further benefit, SS can normally fit into
on-chip SRAM, even if task stacks cannot, which
helps to improve ISR, LSR, and scheduler
performance.
LSRs can perform functions that might otherwise be
performed by small tasks. Examples are functions
invoked by timers and ISRs. Using LSRs saves task
stack space because they run in SS.
One-Shot Tasks offer a unique stack-sharing
capability for smx. A one-shot task is a task that runs
once, and then stops. When it stops, it has no
information to carry over to its next run and thus does
not need a stack. smx permits one-shot tasks to
release their stacks for use by other tasks, while they
wait for events.
One-shot tasks are created and started without a
stack. When dispatched, a one-shot task is given a
temporary stack from the stack pool. When the task
stops, it releases the stack back to the stack pool. smx
also supports normal tasks, which have permanent
stacks that are bound to the tasks when they are
created.

stack

temporary permanent

stack
tasktask

While running, there is no operational difference
between one-shot tasks and normal tasks. Both can be
preempted and both can be suspended while waiting
for events. Both retain their stacks, when preempted
or suspended. However, when stopped, a one-shot
task releases its stack back to the stack pool, whereas
a normal task retains its stack.
For every normal wait service, smx provides a stop
version — see smx API section in the smx datasheet.
Thus, stopping vs. suspending a task introduces no
constraints on what a one-shot task can do vs. a
normal task. It can, for example, stop at an exchange
to wait for a message, just like a normal task can

suspend at the same or different exchange to wait for
a message.
When a one-shot task is dispatched after being
created or stopped, it is given a new stack from the
stack pool, and it starts from the beginning of its main
code. There is very little performance penalty for
starting a task with a new stack versus resuming a
task that already has a stack. (Getting a stack is
balanced by not needing to restore registers from it.)
If no stack is available, the scheduler passes over the
task until one is available. During the wait, the task
retains its position in the ready queue.
Compared to other mechanisms for sharing stack
space (e.g. OSEK BCC1), the smx approach has three
advantages:

(1) Any mixture of one-shot and normal tasks
can run simultaneously.

(2) One-shot tasks can wait at semaphores,
exchanges, etc. when they are stopped.

(3) One-shot tasks can run in any order.
If one-shot tasks do not suspend themselves (i.e. they
can wait only in the stopped state), then the number
of stacks required in the stack pool is equal to the
number of different priorities of one-shot tasks. For
example, if there were 20 one-shot tasks having 3
different priorities, then only 3 stacks would be
required in the stack pool.
Using one-shot tasks: One-shot tasks are good as
helper tasks that do some simple thing then stop.
They are also good for tasks that seldom run. Why tie
up a large block of SRAM for a task that seldom
runs? Examples are tasks that handle exceptions,
infrequent operator requests, infrequent downloads,
etc. One-shot tasks are also good for mutually
exclusive operations which cannot happen
simultaneously (e.g. the task that starts an engine
versus the task that stops the engine), for sequential
operations, or for state machines.
As one gets accustomed to using one-shot tasks, the
applications for them seem to multiply. Since they do
not require allocation of permanent stack space it is
nice to do many little things with many little one-shot
tasks, rather than doing them with a few complicated
tasks. Coding and debugging is much easier for little
tasks.
Performance can be scaled to available RAM simply
by reducing the number of stacks in the stack pool.
Then one-shot tasks may need to wait for stacks. If

www.smxrtos.com/rtos/kernel/smx.pdf

 7

so, performance will be reduced, but the system will
continue to run correctly. With a one-shot task one
gets a full task at a discounted RAM price.
Deleting tasks: Like most kernels, smx permits tasks
to be deleted. A stack is allocated from the smx heap
when a bound task is created and freed to the heap
when a bound task is deleted. Task creation and
deletion are relatively fast operations (though not as
fast as starting and stopping one-shot tasks).
Deleting unneeded tasks is one way to reduce stack
RAM usage. The downside is that deleted tasks
cannot wait for events. Hence, it can be more
complicated to restart them than to restart one-shot
tasks. In addition, deleted tasks drop off the radar
relative to debugger awareness, whereas one-shot
tasks do not. For these reasons, one-shot tasks are
likely to be a better solution in restricted memory
systems.

Efficient Memory Allocation
smx provides both a heap and block pools. Heaps are
popular because of their flexibility and programmer
preference. The new smx heap is fast and
deterministic if bins are full. However, block pools
are still faster and more deterministic. In addition
heaps can fail due to external fragmentation — i.e.
too many small free chunks separated by inuse
chunks.
Block pools are safer, but they also waste memory, in
this case due to internal fragmentation — i.e. blocks
often are larger than necessary, and block pools often
have more blocks than needed. But this is more
controllable than heap fragmentation and also block
pools are simpler.
Offering both a heap and block pools permits using
an optimum combination for a given application.

Sharing Dynamic Control Blocks
In a kernel, each object (e.g. semaphore, task,
message, etc.) requires a control block to manage it.
Control blocks contain information about the object.
smx control blocks are dynamically allocated from
control block pools. For example, when a task is
created, its task control block (TCB) is obtained from
the TCB pool. If the task is later deleted, its TCB is
returned to the TCB pool and can be reused. This
contrasts with most kernels for which all control

blocks are statically allocated at link time and cannot
be shared.
For an smx data block, a block control block (BCB)
is allocated from the BCB pool and linked to a data
block allocated from a data block pool. Both are
returned when the smx block is no longer needed.
The same is true of smx messages, which use
message control blocks (MCBs) linked to data blocks.
In a dynamic situation (e.g. receiving packets over a
communication link), dynamically allocated control
blocks can result in significant memory savings and
flexibility vs. statically allocated control blocks.

Debug Aids
Multitasking problems can be difficult to debug.
Simple, free kernels provide almost no help. This can
be costly in lost development time and missed
schedules. Generally speaking, we spend most of our
time testing and debugging. Hence the debug aids
provided by an RTOS kernel are very important.
Bugs are a serious problem whether malware exploits
them or not. However, the threat of malware
increases the importance of fixing bugs and reducing
other weaknesses that might be exploited. It is
sobering to realize that embedded system
programmers may have less time to fix bugs than
malware writers have to exploit them!

Debugger Support
Of course a debugger is the first line of attack on
bugs. We have done a lot of debugging with smx and
we have made many improvements to make
debugging an easier and more pleasant experience.
smx does extensive error checking, which can be a
strong ally in the war on bugs. When an error is
detected, smx sends an error messages to the console2
identifying the error type, such as “Out of TCBs”.
Many minor problems like this are easily found and
fixed by keeping an eye on the console or a watch on
smx_errno.
smx employs many features to make debugging with
a debugger easier. Among these are: smx control
blocks are defined as structs with meaningful short
names. Clicking on an smx object name in the

2Typically a terminal emulator running on a computer
connected to a serial output from the board under test.

 8

debugger watch window opens the struct display,
revealing its fields and showing their values.
Most objects have user-assigned names, which makes
identification easier — especially when tracing links.
For most objects, names are stored in the fourth field
of their control blocks. Fields with fixed values, such
as cbtype or state, are defined with enums so field
values are easily understood, for example
SMX_CB_TASK or SMX_WAIT.
Link fields are defined as control block type pointers,
when possible, so that clicking on a link field in one
control block reveals the fields of the control block to
which it points. Often it is helpful to trace through a
queue by repetitively clicking forward links.
smx uses short names to facilitate viewing fields,
variables, and values in reasonably narrow columns
to conserve display space. This allows keeping the
watch window reasonably narrow, even when tracing
queues. Source code for smx is limited to 80 columns
so that the source code window is also fairly narrow.
This allows displaying at least one or two additional
windows, such as local variables, registers,
disassembly, memory, call stack, and notes on the
center display.
Generally speaking, the more data seen at once, the
greater the likelihood of spotting anomalies — i.e.
things that do not look right. These often lead to
finding and fixing bugs. The human brain is good at
spotting anomalies, such as a wolf amongst the sheep.
The smxAware debugger plug-in is a graphical and
textual kernel-awareness tool that shows system-level
views. It is opened from the debugger menu. It allows
accessing: smx objects, text event log, and graphical
displays including:

• Event Timeline showing all tasks, ISRs, and
LSRs and their interactions,

• Profile bars for tasks, ISRs, and LSRs

• Stack and Memory usage bar graphs, and

• Memory Map Overview, which shows what is
where in memory.

 See the smxAware datasheet for details.

esmx (examples for smx)
esmx can be linked into the Protosystem by
uncommenting #define SMX_ESMX in the master
preinclude file. It has examples that show a wide

range of usages for smx objects. For example, etask()
has 7 normal task demos and 6 one-shot task demos.
Unlike the simplified demos in the manuals, these
demos are complete, and they compile and run. Thus,
the all-important details are there.
Extreme misery in debugatory can be avoided by
picking a close example, stepping through it to learn
its secrets, and then modifying it to do what you need.

Event Logging
If enabled, events are logged into the event buffer
(EVB) for later viewing by smxAware, or via the
debugger. EVB is a cyclic buffer of variable-size
event records. Records are created by logging macros
inserted into smx code. The types of events that are
logged are:

• Task start, stop, suspend, and resume
• SSR calls
• LSR entry, exit, and invoke
• ISR entry and exit
• Errors
• User events

Logging can be selectively enabled or disabled by
event type and also by one of eight SSR groups,
defined by the user.
Each record is precisely time-stamped. EVB can be
uploaded and viewed through smxAware as a
graphical timeline or as an event log. The timeline
provides a convenient graphical view, which can be
zoomed in or out. The event log is useful for support
— it is used to record what was happening in a
system when an error occurred.
Recording errors in EVB is helpful because it allows
seeing them in the context of other system and user
events, which helps to find their causes. Errors appear
as red dots on timeline graphs.
Seven user event log macros are provided to log from
0 to 6 parameters per event. User event macros can be
placed, like printf()'s, anywhere in the code. Events
appear in the smxAware timeline or event log,
relative to system events. User events appear as white
tick marks within task/LSR/ISR bars, similar to other
events. Mousing over them with the Details button on
shows the parameters logged.

www.smxrtos.com/rtos/devtools/smxaware.pdf

 9

Stack Overflow Detection
Stack overflow is a common problem in multitasking
systems. It can damage other tasks’ stacks, the heap,
data buffers, etc. Often the culprit is not the task to
experience problems. Thus it can be difficult to debug
stack overflow and it can waste precious debug time.
The smx scheduler checks the stack pointer and the
stack high-water mark when suspending or stopping a
task. If either indicates an overflow, the error
manager is called, which logs the problem and sends
an “smx STK OVFL” message to the console.
Stack padding is useful during development. A
configuration option allows placing stack pads above
all stacks of user-selectable size. Stack pads absorb
stack overflows thus preventing damage, which
allows the system to continue running.
smxAware has a stack usage window, which shows
stack usage per task and which stacks have
overflowed into their stack pads. This makes spotting
insufficient stack sizes easy and enlarging them while
you still have hair left.

Task Stack Sizing
Multitasking requires multiple stacks and stacks are
one of the biggest RAM users in a system, so fine-
tuning stack sizes is important to save memory. smx
maintains a high-water mark for each task to indicate
maximum stack usage by the task.
Stack scanning is the most reliable way to measure
stack usage — a task need not be stopped at peak
stack usage in order to see that there is a problem.
Stack scanning is done from the idle task in order to
not take time away from important tasks. The stack
high-water mark is maintained in each task’s control
block. Stack usage can be viewed graphically in
smxAware, or it can be seen in the debugger watch
window by comparing the shwm field to the ssz field
in a task’s TCB.
As previously noted, the use of the System Stack for
everything except tasks makes task stack sizing much
easier to do and less risky.

Heap Debugging
Heap debugging is another challenging endeavor.
Particularly problematic are block overflows that
damage heap links, thus causing the system to
experience exceptions, such as attempting to access

non-existent memory. Heap leaks, due to tasks
forgetting to free blocks, are also difficult to find.
In order to maximize memory efficiency, inuse
chunks have only a forward link and a backward link
+ flags, producing a total overhead of 8 bytes.
Looking at them is not helpful, other than to see
whether they have been damaged.
The smx heap provides a debug mode. When the
debug mode is on, block allocations produce debug
chunks instead of inuse chunks. A debug chunk
consists of a heap debug control block (HDCB)
followed by fences, followed by the allocated data
block, followed by more fences. (Fences are words
with a fixed pattern.) The number of fences and the
fence pattern are configuration options. Fences are
traps — enough fences will keep the overflow inside
the chunk, thus preventing damage to the heap, and
allowing the system to keep running, so you can catch
the bug causing the overflow.
Obviously, a debug chunk can be much larger than an
inuse chunk. This is why selective use is permitted —
debug mode can be turned on only while suspected
tasks or functions run. Thus debug chunks can be
used even in tightly memory-constrained systems.
An HDCB contains the block owner (task or LSR that
allocated the block), time of allocation, and size.
These are helpful to track down forgetful tasks that
cause memory leaks.
Sometimes, the only way to find a heap problem is to
manually scan the heap using the memory window.
This is a mind-numbing experience, fraught with
human error. To reduce eye and brain strain, heap fill
mode can be turned on. In this mode, the top chunk is
filled with a unique pattern, during heap initialization.
Thereafter, data blocks are filled with a unique
pattern, when allocated, and with another unique
pattern, when freed. This helps a lot to separate data
from metadata and free from inuse. It is also easy to
see the top chunk calving and becoming ever smaller.
Although this may not be helpful, it is interesting to
watch.

Precise Profiling
If profiling is enabled, precise run times are recorded
for each task, all ISRs combined, and all LSRs
combined. Overhead is calculated as the remaining
time per frame. Resolution is one tick timer clock,
which depends upon hardware and BSP code, but is

 10

typically one to several instruction clocks. Hence,
even infrequent, small tasks will accumulate run time
counts (RTCs).
Task profiling is implemented by RTC functions built
into smx that record the tick timer count when a task
starts running and the count when it stops running.
The differential count is then added into the RTC
field in the task’s TCB. Similar functions accumulate
RTCs for combined ISRs and combined LSRs.
The profile frame size can vary from one tick to
hundreds of seconds. Small frames are typically
useful during debug, whereas long frames may be
more useful for systems in the field, in order to
accumulate continuous operational data without
overloading storage and communication facilities.
At the end of a frame, all RTCs are copied into an
RTC array and cleared. The array has a row per RTC
and a column per frame. Each column constitutes a
sample. When full, each new sample overwrites the
oldest sample. Profile data is displayed via smxAware
in graphical form, or it can be viewed in a debugger
watch window. Coarse profile values displayed on the
console are calculated from RTCs each second.
Run time counts show where processor bandwidth is
being used and can help to spot problems such as
excessive overhead or tasks hogging the processor.
RTCs can also be used for run-time limiting. For
example, a system-monitoring task could monitor
RTC frames and make task priority adjustments to
achieve more balanced operation. It could even
suspend overly-active tasks for one or more frames.
This could be a means to defend against denial-of-
service attacks or to stop tasks that are in infinite
loops.

Precise Time Measurements
smxBase services are available to measure precise
times between a reference point and one or more end
points. This is helpful for system optimization.
Results are typically stored in an array. Resolution is
the same as for profiling. Hence, very precise
measurements can be made for function execution
times, response times, switching times, interrupt
latencies, etc. The maximum time measurement is
limited to one tick period.
Use of time measurement services is good for
monitoring times in running systems. For example, it
is used in smx_HeapMalloc() to accumulate best and

worst allocation times. During debug, smxAware
provides tools for precise measurements of operations
over short to long periods. This may be the easiest
way to get quick time measurements.
Elapsed time (etime) can be used for longer time
measurements. Resolution for etime is one tick. One
tick resolution, which is offered by many RTOS
kernels, is not adequate for modern processors, some
of which can execute one million instructions in a
single tick!

Safety, Security, and Reliability
Concern about SS&R issues is growing due to
deployment of Internet of Things, proliferation of
embedded systems, and greater exposure to malware
and other threats, such as high-energy particles. A
kernel can either be a big help or a big hindrance in
dealing with these matters.
Kernel misuse can be accidental (a bug) or intentional
(malware). Either way, it is important to reduce the
ways in which it can happen. If the kernel is able to
detect and recover from misuse, it can help in
developing safe, secure, and reliable systems. On the
other hand, if the kernel has many serious
vulnerabilities, it may be impossible to build a safe,
secure, and reliable system using it.
smx already has many protections in place, and more
are being added. The following sections discuss
current features and how they can help to develop
safe, secure, and reliable systems.

Error Detection and Management
Error Detection is the starting point and smx
monitors about 70 error types. These include invalid
parameters for services, broken queues, heap
overflow, stack overflow, invalid control blocks, null
pointer references, and resource exhaustion. These
are all checked frequently. smx provides three ways
to deal with detected errors:
Local Error Management smx services return
FALSE or NULL, if an error or a timeout has occur-
red. For reliable operation, calls to smx services
should be implemented as follows:
 if (smx_Call())
 /* do normal action */
 else
 /* use SMX_ERR to fix problem */

 11

SMX_ERR is macro that tests the err field in the
current task's TCB. If it is 1, a timeout has occurred
and the most appropriate action might be to try again;
otherwise, an error has been detected and SMX_ERR
is the error number; it should be used to determine
what to do.
Local error management provides the most precise
error management because it is done in the context of
the error. However, too much local error management
bloats the code and makes it difficult to understand.
Central Error Management. smx provides a central
error manager, smx_EM(), to reduce the need for
local error management. When an error is detected,
smx_EM() is automatically called. It records the error
number in smx_errno, increments a 32-bit global
error counter, and increments an 8-bit counter for the
error type. If the error occurred in the current task, the
error number is loaded into its err field. Information
regarding the error may also be recorded in the error
buffer (EB) and in the event buffer (EVB), and an
error message is queued for output to the console.
These actions may be adequate for most errors in
most systems. Sadly a project may be out of time to
do better.
Error Hook. smx_EMHook() is called from
smx_EM() to provide a middle ground between
overly encumbered local code and non-specific
central code. It allows the user to add specific error
handling code for certain error types.
For example a switch can be made on the error type.
Then code for that error type has access to the current
task and other variables to effect a recovery or to
provide a better record of the error, such as using user
event macros to log more information about it into
EVB. This code could also send reports back to a
central location for analysis.
Safe Error Manager. An error manager must be
designed to not cause an error, by itself. Such an error
would occur under rare circumstances, which could
be extremely hard to duplicate. And such an error
would be totally unexpected. smx_EM() does the
following to avoid this:
It runs under the System Stack so that it cannot cause
a task stack overflow, while processing another error.
(One would not normally think to include extra stack
space for error handling when tuning task stack sizes,
and the extra RAM requirement per stack would
probably not be welcome, either.)

Error message pointers are enqueued for later console
output by the idle task to avoid taking time from
critical tasks.
Interrupts are enabled so that critical interrupts will
not be ignored due to unrelated error processing.
Error Buffer (EB) is a cyclic buffer of error records.
Each error record contains the error type (errno), the
time of occurrence, and the task or LSR in which it
occurred. The error buffer size can be adjusted from a
few records to hundreds of records, as needed. EB
can be viewed as an array of records in a debugger or
symbolically in smxAware.
Stack Overflow. If a task cannot be suspended
because its Register Save Area (RSA) would be
overwritten, the task is automatically restarted. If
damage has or will occur outside of the stack, a
system exit is invoked. It, in turn, may cause a system
reboot, as determined by application code.

Task Timeouts
Every smx service that causes a task to wait requires
a timeout to be specified. Timeouts are primarily for
safety, but can also be used for accurate timing. For
safety, they ensure that tasks do not wait indefinitely
for an event that has failed to occur. If no wait is
desired, NO_WAIT can be specified. If no timeout is
desired INF can be specified. However, requiring
timeouts on all task waits can aid debugging and
increase reliability.
Each task has a timeout register that records the time
by which it should be resumed or restarted. The
soonest timeout is compared to etime by the
smx_TimeoutLSR(). If less than or equal to etime, the
corresponding task is resumed or restarted. The
timeout LSR can be invoked every tick, if timeouts
are being used for accurate timing, or after many ticks
if timeouts are only being used for safety. Either way,
the timeout mechanism has been designed to be
efficient and add very little overhead.

Graceful Overload Handling by LSRs
Peak interrupt loads are difficult, if not impossible, to
predict and they are likely to occur at the worst
possible times. In such situations, LSRs provide a
safety mechanism. This is because an LSR can be
invoked many times before running and it can be
interrupted and invoked more times while running.
Each invocation can be passed a unique parameter

 12

such as a timestamp, a reading, or a pointer. When
the peak load has passed, LSRs run in the order
invoked, thus preserving the order of events.
This behavior achieves graceful degradation under
stressful situations. The system slows but does not
break. Deadlines may be missed, but order is not lost.
In this circumstance, a control system may become
sluggish but continue operating. The resulting
dampening might be beneficial to reduce physical
stress on machinery or to give an operator a chance to
shut the system down. In a data acquisition system,
data will not be lost.

The Unstoppable LSR
Unlike tasks, which can be preempted by higher
priority tasks or blocked by lower priority tasks,
LSRs are not subject to delay by any task. They are
immune to priority inversion because they cannot
wait on events. They are simple creatures, which,
except for interruption by ISRs, are undeterred in
their jobs. The unstoppable LSR may be exactly what
is needed for safety-critical and time-critical
functions. For more information on LSRs, see the
Link Service Routines white paper.

Safe Messaging
Most kernels offer rudimentary messaging in which
pointers to messages or small messages are passed via
what are called message queues. smx pipes can be
used to do the same thing, so this kind of messaging
is supported by smx. However, it has many problems
with regard to reliability and efficiency:

• The receiving task cannot verify that it has
received a valid pointer to the start of a
message. The pointer could point anywhere,
which could result in processing wrong data or
writing to a wrong memory area.

• Message size is not specified. Some other
method must be used to tell the receiving task
the size of the message it has received.

• No message priority exists to permit more
important messages to be processed first.

• No indication is given of where to return a used
message when it is no longer needed.

• An owner is not specified, so there is no
automatic means to avoid memory leaks when
owner tasks are deleted.

• A reply address is not specified for servers to
know where to send replies to clients.

• Passing messages directly through pipes
requires copying them in and copying them out.

Application code can compensate for these
deficiencies, but doing so requires new code to be
written and debugged. It also reduces independence
between tasks because receiving tasks must know
more about the messages they are receiving.
When messages and their parameters get separated,
the potential for errors increases. An smx message
consists of a message block, holding the actual
message, which is linked to a message control block
(MCB), holding the message parameters. This is
consistent with good programming practice.
A message’s handle is a pointer to its MCB. A correct
handle is verifiable because it must be in the range of
the MCB pool and it must point to a structure with
the MCB type in its cbtype field. Hence if a message
handle is damaged, it is not likely to be accepted and
used.
MCBs increase the independence between tasks and
also their tolerance to change. For example, an smx
receiving task need not know the message size. It
simply loads the MCB size field into its local counter.
When the counter reaches 0 the message is empty and
can be released back to its pool. Thus, messages can
vary in size, without changing the code.
Using bundled parameters also helps to avoid
miscommunication between task authors and is more
adaptable to change. Some parameters, such as the
owner, are used by smx to increase reliability. For
example a task cannot send or release a message that
it does not own. This avoids the problem of a task
accidentally releasing a message that it sent to
another task.
Embedded within the MCB is the message block
pointer. Neither the sending task nor the receiving
task has any reason to alter this pointer, which is
loaded by smx3. Both work with their own block
pointers. Hence, it is unlikely that a receiving task
will process wrong data due to receiving a bad
message block pointer. Furthermore, return of the
message block to its pool is governed by the pool
handle in the MCB, not by a message pointer, so this
is safer, too.

3 In this kind of discussion, it is assumed that smx code is
more reliable than new application code because smx code
has been proven by use in many projects.

www.smxrtos.com/articles/lsr_art/LinkServiceRoutines.pdf

 13

Message Exchanges
smx messages are sent to and received from message
exchanges. An exchange is an smx object that
enqueues either messages or tasks, whichever is
waiting for the other. The use of exchanges has
important advantages over direct task-to-task
messaging, used in some kernels:

• Anonymous receivers. The receiving task’s
identity is not hard-coded into the sending task’s
code. The sender simply sends its messages to a
known exchange. Thus, it is easy to swap
receiving tasks without altering sending task's
code. This can be useful for handling different
product versions, different installation
configurations, going from startup mode to
operating mode, or for other reasons.

• No limit on the number of waiting messages at
an exchange.

• Work queues. A message queue at an exchange
is a work queue for a server task that is
receiving messages from that exchange. These
messages could be coming from many client
tasks.

• Token messages. A message can be used as a
token to control access to a resource and, at the
same time provide information to access the
resource (e.g. its port number).

• Broadcasting, multicasting, and distributed
message assembly are supported.

Message Priorities
smx messages have priorities. Exchanges permit
servicing high-priority messages ahead of low-
priority messages. This allows more urgent work to
be completed ahead of less urgent work.
smx goes a step beyond this by also providing
priority pass exchanges. A priority pass exchange
changes the priority of the receiving task to that of the
received message. This allows a client task to pass a
priority to a server task via the messages that it sends
and thus control the priorities at which they are
processed. For example, a 911 exchange could give
priority to fire over lost dog.
This is especially useful for resource server tasks.
Adjusting resource server task priorities permits them
to operate as extensions of their client tasks. This is
preferable to client tasks directly accessing resources,
because then delays and priority inversions can occur.

In this approach, the main task goes on with its work,
knowing that the server task will access the resource
at a later time. When done with its work, the main
task might wait at another exchange or semaphore for
a reply from the server task, which tells it if the
resource operation was completed properly.

Safe Block Pools
Unlike the bare block pools provided by smxBase,
smx provides safe block pools. smxBase pools are
useful for ISRs and drivers, but they lack important
safety features. This is ok in low-level, non-
multitasking code which generally is simple and
requires high performance, but it is not good in tasks.
An smx block consists of a data block linked to a
block control block (BCB). smx blocks are
manipulated via their handles, which are pointers to
their BCBs. smx blocks have the following
advantages over bare blocks:

• Block pool services are task-safe.
• Blocks are automatically freed to their correct

pools.
• A block is automatically freed if its owner task

is deleted.
• Pool information can be obtained via a block’s

handle.
• smx block pools are more easily created and

deleted than base block pools.
For example, to release a block, it is necessary only to
know its handle — smx knows its pool and other
particulars about it (e.g. its size). This prevents
releasing a block to the wrong pool, which can be
nasty.
As with smx messages, a bare block can be made into
an smx block and an smx block can be unmade into a
bare block. Hence, for those who prefer message
queues to exchanges, bare blocks can be made into
smx blocks and the smx block handles can be passed
via a pipe. This improves the safety of queue
messaging.

Reliable Heap
Self healing. Heaps are fragile structures due to their
high concentrations of pointers that are embedded in
the data. These pointers present a large target for
block overflows, wild pointers, and energetic
particles that cause bit flips. Since embedded systems
are often deployed in remote places and are expected

 14

to run for extended periods, some amount of self-
healing is desirable
Hence, the new smx heap incorporates a scanning
function that is called from idle. This function scans
only a few nodes forward per pass so other tasks can
run. It reports errors found and fixes them if it can. A
companion function can be called to scan backward
through the heap in order to fix broken forward links.
Heap self healing is a work in progress.
Heap recovery. Another common problem in heaps,
especially if memory is limited, is not being able to
allocate a large block, after running for a long time.
smx_HeapRecover() is provided to search for
adjacent free chunks that can be merged to form a
big-enough free chunk and thus recover.

Dynamically Allocated Regions
smx is shipped with two DARs:
SDAR is used for smx objects, such as control
blocks. It is typically only a few kilobytes in size, and
can usually be put into on-chip SRAM to improve
performance.
ADAR is used for the heap, stack pool, user-defined
block pools, and other dynamic objects. It normally is
large and is located in external SDRAM, if present.
Isolating smx objects from application objects
improves reliability and helps debugging by reducing
damage to smx objects due to application code bugs.
This is a pernicious problem that cuts the ground out
from under one, because one assumes that the kernel
is running properly. Wrong assumptions are the
hardest problems to fix.

Avoiding Unbounded Priority Inversion
This occurs when a higher priority task is waiting for
an object owned by a lower priority task and the
lower priority task is preempted by one or more mid-
priority tasks. The mid-priority task(s) may run for
any length of time, thus causing unbounded priority
inversion for the high priority task. This can cause
high-priority tasks to miss deadlines causing system
failures.
The traditional solution to this problem is for tasks to
wait on mutexes, which control access to the shared
resources. Most RTOSs, including smx, offer priority
inheritance to prevent unbounded inversions. With
this, when a high-priority task waits at a mutex, the

current owner's priority is boosted to the same
priority. This prevents mid-priority tasks from
running.
smx mutexes also implement priority propagation,
which means that if the mutex owner is waiting on
another mutex, the owner of that mutex is also
promoted. Priority promotion propagates to all
mutexes linked together, in this way. Hence the
owner of the final mutex, and all owners in between,
will be promoted to the high priority. Many kernels
do not offer this.
smx mutexes also implement staggered priority
demotion. This means that when a task releases a
mutex, its priority is demoted to the highest priority
of any task waiting for its other owned mutexes.
When the last mutex is released, the task reverts back
to its normal priority.
These features ensure that smx mutexes work reliably
in complex multi-mutex situations.

Deadlock Prevention
smx mutexes also offer ceiling protocol, which is a
simpler way to avoid unbounded priority inversion.
With it, when a task obtains a mutex, its priority is
immediately raised to the ceiling priority of the
mutex. The ceiling priority of a mutex is set to the
priority of its highest-priority potential owner. Thus
only tasks of higher priority can run and these tasks
do not use the mutex.
Among the group of tasks using a mutex, if other
mutexes are also used, then the highest priority of any
user of any mutex in the group of tasks becomes the
ceiling priority of all mutexes in the group. Then, if
any user gets one mutex in the group, no other user
can run. This makes mutex deadlocks impossible,
because there can be only one owner, at a time, of
any mutex in the group. Hence, ceiling protocol
provides a simple solution for two vexing problems
of mutex usage.
One downside of ceiling protocol is that it is not
automatic. Hence, if a higher-priority user is added or
if the priority of a current user is raised above the
ceiling, the ceiling will fail to protect against
unbounded priority inversion for that user. To guard
against this, priority inheritance may be enabled
along with ceiling protocol. Then users above the
ceiling will be protected. In fact, the ceiling may be
set at a mid-level, if so desired. This could be used to

 15

prevent deadlocks among lower-priority users that
share a group of mutexes while not preventing
higher-priority users that use one mutex in the group
from running.

Other Special Features
Power Management
The smx_PowerDown(sleep_mode) service provides
a power-down framework, at the RTOS level. It is
called from the idle task, when there is no useful
work to do. It in turn calls the
sb_PowerDown(sleep_mode) function, which does
the actual power down process and time recording.
This is hardware and application dependent and thus
must be user-implemented.
When power is restored, control returns to the sb
function, which must determine time lost, initialize
the tick timer counter, and return ticks lost to
smx_SysPowerDown(), which then performs tick
recovery. This process handles events which timed
out during the power-off period. It does this in an
efficient manner that preserves the proper order of
timed events. Execution time for tick recovery is
dependent upon the number of events that timed-out,
not upon the number of ticks lost.
Operation is largely transparent to the application, if
sb_PowerDown() is able to accurately determine the
time lost.

Easy to Use API
The smx API has a high degree of symmetry and
orthogonality. By symmetry we mean that what can
be done can be undone. For example, smx offers a
delete function for nearly every create function, a
start function for every stop function, and a resume
function for every suspend function.
By orthogonality, we mean that kernel services
operating upon tasks do not depend upon the task’s
state. For example, deleting an smx task has the same
result, regardless of its state. This sounds easy, but
consider if the task is in the run state, then it is

actually deleting itself, which is not easy to do.
However task self-deletion is actually useful,
underlining the importance of orthogonality.
Limiting the number of parameters per function is
also important for ease of use. Nearly all smx
functions have three or fewer parameters. Functions
with many parameters can be difficult to use correctly
— there being problems remembering what each
does, their order, etc. In addition, some combinations
may not be legal and others may be untested.
As much as possible, smx avoids restrictions on the
use of its services. Restrictions are easily forgotten,
leading to problems. For example, most kernels go
into an undefined state if a task tries to delete itself or
if the idle task is accidentally deleted. We try to avoid
Achilles heels, like these, because they can happen
during normal operation and usually have bad
consequences.
See the smx API section of the smx datasheet for
details.

C++ Support
smx maintains a this pointer in the TCB of each task.
When a task switch occurs, the new task's this pointer
is loaded into the global this pointer.
Another C++ requirement stems from global objects.
A C++ compiler generates initializers for global
objects. Initializers run from the boot code before
main() is called. In order to support initializers, all
smx objects are auto-created and initialized as
needed. For example, when the first task is created
(possibly by an initializer), the TCB pool and stack
pool are automatically created, first. Since the stack
pool comes from ADAR, it is initialized before the
stack pool.
smx++ is an optional product that goes a step further
by providing smx base objects from which C++
application objects can be derived or which can be
used as member objects in them. See the smx++
datasheet for more information.

© Copyright 2013-2015 Micro Digital, Inc. \\server\d\marketing\lit\datasheets\smxspecfeat.doc 5-11-15

www.smxrtos.com/rtos/kernel/smx.pdf
www.smxrtos.com/rtos/kernel/smxpp.pdf

